Faster Algorithms for Maximal 2-Connected Subgraphs in Directed Graphs

Veronika Loitzenbauer

Bar-Ilan University veronika@datalab.cs.biu.ac.il

joint work with Monika Henzinger and Sebastian Krinninger (ICALP'15) and Shiri Chechik, Thomas D. Hansen, Giuseppe F. Italiano, and Nikos Parotsidis (SODA'17)

2-Edge Connected

Can u and v still reach each other when an arbitrary edge is deleted?

Yes: *u* and *v* are 2-edge (strongly) connected

Graph is 2-edge-connected if all pairs of vertices are

2-Vertex Connected

u and v are 2-vertex (strongly) connected ⇔ u and v still strongly connected after any vertex other than u or v removed

Graph is 2-vertex-connected if all pairs of vertices are and it has \geq 3 vertices

Analyzing 2-Connectivity in Digraphs

1. 2-Connected Blocks/Components:

Which pairs of vertices are 2-connected?

- Paths can use vertices not in same block
- ► O(m) time Georgiadis et al. SODA'15 & ICALP'15

2. Maximal 2-Connected Subgraphs:

All vertex pairs 2-connected within subgraph This work. Open: Linear time algorithm?

Coincide for undirected graphs: O(m) time Tarjan '72

Results

Baseline: O(mn) time algorithm (Tarjan '76, Georgiadis '10) m edges, n vertices

- $O(n^2)$ time algorithm
 - M. Henzinger, S. Krinninger, V. Loitzenbauer ICALP'15
- $O(m^{3/2})$ time algorithm
 - S. Chechik, T. D. Hansen, G. F. Italiano, V. Loitzenbauer, N. Parotsidis SODA'17
- extends to improvements for k-connected subgraphs for const. k, even for undirected graphs

This talk: 2-edge-connected subgraphs

Basic Algorithm

- As long as there is an edge whose removal increases number of SCCs, remove it
- Output remaining SCCs

 $\Theta(mn)$ worst case

Beating O(mn)...

- Still $\Theta(n)$ iterations
- How to refine partition of vertices in o(m)?
- Find directed edge cut of size ≤ 1 in each iteration
 - ▶ 1-edge-out set: vertex set S with \leq 1 edge to V \ S
- In proper subgraph in time proportional to size of S
 - ► $O(n^2)$: in time $O(n \cdot |S|)$ consider *i* outgoing edges per vertex to find $|S| \le 2^i$
 - O(m^{3/2}): in time O(|E(S)|)
 "local" depth-first search from vertices that lost edges

1-Ege-Out Set S of u of Size $\leq \Delta$

Idea: Send one unit of flow from *u* to vertex outside of *S*

- \Rightarrow No path out of S in residual graph
- \Rightarrow Second search from *u* explores *S*

- Run DFS from u for $2\Delta + 1$ edges
- Path of vertices whose subtraversal had > ∆ edges

Thank you!